skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Funk, Jennifer L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Naik, Sushanta Kumar (Ed.)
    Allometric equations are often used to estimate plant biomass allocation to different tissue types from easier-to-measure quantities. Biomass allocation, and thus allometric equations, often differs by species and sometimes varies with nutrient availability. We measured biomass components for five nitrogen-fixing tree species ( Robinia pseudoacacia , Gliricidia sepium , Casuarina equisetifolia , Acacia koa , Morella faya ) and three non-fixing tree species ( Betula nigra , Psidium cattleianum , Dodonaea viscosa ) grown in field sites in New York and Hawaii for 4–5 years and subjected to four fertilization treatments. We measured total aboveground, foliar, main stem, secondary stem, and twig biomass in all species, and belowground biomass in Robinia pseudoacacia and Betula nigra , along with basal diameter, height, and canopy dimensions. The individuals spanned a wide size range (<1–16 cm basal diameter; 0.24–8.8 m height). For each biomass component, aboveground biomass, belowground biomass, and total biomass, we determined the following four allometric equations: the most parsimonious (lowest AIC) overall, the most parsimonious without a fertilization effect, the most parsimonious without canopy dimensions, and an equation with basal diameter only. For some species, the most parsimonious overall equation included fertilization effects, but fertilization effects were inconsistent across fertilization treatments. We therefore concluded that fertilization does not clearly affect allometric relationships in these species, size classes, and growth conditions. Our best-fit allometric equations without fertilization effects had the following R 2 values: 0.91–0.99 for aboveground biomass (the range is across species), 0.95 for belowground biomass, 0.80–0.96 for foliar biomass, 0.94–0.99 for main stem biomass, 0.77–0.98 for secondary stem biomass, and 0.88–0.99 for twig biomass. Our equations can be used to estimate overall biomass and biomass of tissue components for these size classes in these species, and our results indicate that soil fertility does not need to be considered when using allometric relationships for these size classes in these species. 
    more » « less
  2. Medeiros, Juliana (Ed.)
    Abstract The study of plant functional traits and variation among and within species can help illuminate functional coordination and trade-offs in key processes that allow plants to grow, reproduce and survive. We studied 20 leaf, above-ground stem, below-ground stem and fine-root traits of 17 Costus species from forests in Costa Rica and Panama to answer the following questions: (i) Do congeneric species show above-ground and below-ground trait coordination and trade-offs consistent with theory of resource acquisition and conservation? (ii) Is there correlated evolution among traits? (iii) Given the diversity of habitats over which Costus occurs, what is the relative contribution of site and species to trait variation? We performed a principal components analysis (PCA) to assess for the existence of a spectrum of trait variation and found that the first two PCs accounted for 21.4 % and 17.8 % of the total trait variation, respectively, with the first axis of variation being consistent with a continuum of resource-acquisitive and resource-conservative traits in water acquisition and use, and the second axis of variation being related to the leaf economics spectrum. Stomatal conductance was negatively related to both above-ground stem and rhizome specific density, and these relationships became stronger after accounting for evolutionary relatedness, indicating correlated evolution. Despite elevation and climatic differences among sites, high trait variation was ascribed to individuals rather than to sites. We conclude that Costus species present trait coordination and trade-offs that allow species to be categorized as having a resource-acquisitive or resource-conservative functional strategy, consistent with a whole-plant functional strategy with evident coordination and trade-offs between above-ground and below-ground function. Our results also show that herbaceous species and species with rhizomes tend to agree with trade-offs found in more species-rich comparisons. 
    more » « less
  3. Free, publicly-accessible full text available January 15, 2026
  4. Abstract Symbiotic nitrogen fixation (SNF) is a key ecological process whose impact depends on the strategy of SNF regulation—the degree to which rates of SNF change in response to limitation by N versus other resources. SNF that is obligate or exhibits incomplete downregulation can result in excess N fixation, whereas a facultative SNF strategy does not. We hypothesized that tree‐based SNF strategies differed by latitude (tropical vs. temperate) and symbiotic type (actinorhizal vs. rhizobial). Specifically, we expected tropical rhizobial symbioses to display strongly facultative SNF as an explanation of their success in low‐latitude forests. In this study we used15N isotope dilution field experiments in New York, Oregon, and Hawaii to determine SNF strategies in six N‐fixing tree symbioses. Nitrogen fertilization with +10 and +15 g N m−2 year−1for 4–5 years alleviated N limitation in all taxa, paving the way to determine SNF strategies. Contrary to our hypothesis, all six of the symbioses we studied sustained SNF even at high N.Robinia pseudoacacia(temperate rhizobial) fixed 91% of its N (%Ndfa) in controls, compared to 64% and 59% in the +10 and +15 g N m−2 year−1treatments. ForAlnus rubra(temperate actinorhizal), %Ndfawas 95%, 70%, and 60%. For the tropical species, %Ndfawas 86%, 80%, and 82% forGliricidia sepium(rhizobial); 79%, 69%, and 67% forCasuarina equisetifolia(actinorhizal); 91%, 42%, and 67% forAcacia koa(rhizobial); and 60%, 51%, and 19% forMorella faya(actinorhizal). Fertilization with phosphorus did not stimulate tree growth or SNF. These results suggest that the latitudinal abundance distribution of N‐fixing trees is not caused by a shift in SNF strategy. They also help explain the excess N in many forests where N fixers are common. 
    more » « less